Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19048, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923856

RESUMO

This study evaluates the validity of forecasting air temperature ranges in 2100 using the SimCLIM climate projection model at spatial and temporal scales within the Southern Levantine basin. The model utilized historical air temperature data from 2000 to 2016, collected at seven southeastern Mediterranean stations, as well as 74 climate pattern ensembles integrated within SimCLIM. A combination of 40 global climate models (GCMs) and IPCC AR5 greenhouse gas emissions scenarios embedded in SimCLIM was employed to forecast mean, minimum, and maximum temperatures for 2100.The findings reveal that the average temperature increase in 2100, relative to the representative concentration pathways 2.6, 4.5, 6.0, and 8.5, will range between 0.8-1.17 °C, 1.48-2.0 °C, 2.1-3.8 °C, and 3.9-4.6 °C, respectively. Due to its acceptable accuracy, the SimCLIM model, incorporating 40 GCMs and 74 climate pattern ensembles, is highly recommended for forecasting future climate conditions. The model was evaluated using available temperature records in the study area, yielding a prediction percentage error of 2%, which strongly supports the use of SimCLIM.

3.
Sci Total Environ ; 879: 163038, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37003322

RESUMO

Mitigation and rehabilitation are responses to climate change and human misuse. However, many regions worldwide still lose coral reefs even after implementing these responses. We chose Hurghada city, on the Red Sea, and Weizhou island, on the South China Sea, as sample regions to assess their various modes of coral community structure loss against the combined climatic and human impact drivers that led to this shift. Despite the former being considered a regional coral refuge, while the latter was limited, both regions have previously intervened with coral restoration. We found that even after three decades of impact cessation by forcing laws, most coral reef states are still declining (about a third and a half in both cities), have not harnessed the existing crowded larval density, and are unrecovered. Such findings imply that the combined impacts will persist, necessitating a broad connectivity analysis that enables a suitable intervention (hybrid solutions hypothesis). Each state of coral categories was connected to certain combined stressor factors using our broad connectivity analysis to grasp the extent and relative contribution of coral community shift since our data obtained from comparable sites were widely varied. Moreover, destructive emerged changes have transformed the coral community structure under the forced adaptation scenario of the community structure, boosting those who can resist at the expense of others. To prove our hypothesis, we used the connectivity findings in determining the optimal technique and spots for coral rehabilitation around the two cities. We then compared our findings with the outcomes of two other existing adjacent restoration projects related to other endeavors. Our hybrid approach harvested coral larvae that had been wasted in both cities. Thus, hybrid solutions are globally required for such cases, and proper early interventions are needed to maintain the genotype power to boost coral adaptability throw global ecological settings.


Assuntos
Antozoários , Recifes de Corais , Animais , Humanos , Ecossistema , Larva , Mudança Climática
4.
Sci Rep ; 13(1): 3456, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859411

RESUMO

Many Artificial Reefs (ARs) have been used worldwide for marine habitat and coral reef restoration. However, the microbial community structure that colonize the ARs and their progressive development have been seldom investigated. In this study, the successive development of the microbial communities on environmentally friendly Artificial Biological Reef structures (ABRs)R made of special concrete supported with bioactive materials collected from marine algal sources were studied. Three seasons (spring, summer and autumn), three coral reef localities and control models (SCE) without bioactive material and (NCE) made of normal cement were compared. The structure of the microbial pattern exhibited successive shifts from the natural environment to the ABRs supported with bioactive materials (ABAM). Cyanobacteria, Proteobacteria, and Planctomycetota were shown to be the most three dominant phyla. Their relative abundances pointedly increased on ABAM and SCE models compared to the environment. Amplicon Sequence Variant (ASV) Richness and Shannon index were obviously higher on ABAM models and showed significant positive relationship with that of macrobenthos than those on the controls and the natural reef (XR). Our results offer successful establishment of healthy microbial films on the ABR surfaces enhanced the restoration of macrobenthic community in the damaged coral reefs which better understands the ecological role of the ABRs.


Assuntos
Cimentos Ósseos , Microbiota , China , Recifes de Corais , Cimentos de Ionômeros de Vidro
5.
Mar Environ Res ; 183: 105832, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423460

RESUMO

Harmful algal blooms (HABs) are a frequent occurrence in China's offshore waters due to climate change and human activity, particularly in the Yangtze River Estuary and adjacent waters. Here, we studied HABs and their relationship with climatic and environmental factors in these waters from 1979 to 2016 using historical observations and reanalysis data. We then projected HABs frequency under various climate scenarios using the "environmental impact factor-frequency of HABs" mathematical model built using the BP neural network method and CIMP5 model data (RCP 2.6, RCP 4.5, and RCP 8.5). The results suggest a significant positive correlation between HABs frequency and seawater nutrient concentration, winter sea surface temperature, and low-wind days, and HABs frequency is anticipated to increase significantly by the 2040s compared with that of the historical era. Furthermore, future phytoplankton conditions are predicted to favor HAB species.


Assuntos
Proliferação Nociva de Algas , Rios , Humanos , Estuários , Fitoplâncton , Água do Mar
6.
Environ Microbiol Rep ; 15(1): 13-30, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054576

RESUMO

Coral-bacterial interaction is a major driver in coral acclimatization to the stressful environment. 16S rRNA High-throughput sequencing was used to classify the role of different coral reef compartments; sediment, water, and tissue; in the South China Sea (SCS), as well as different locations in shaping the microbial community. The majority of OTUs significantly shifted at impacted sites and indicated distinction in the relative abundance of bacteria compartment/site-wise. Richness and diversity were higher, and more taxa were enriched in the sediment communities. Proteobacteria dominated sediment samples, while Cyanobacteria dominated water samples. Coral tissue showed a shift among different sites with Proteobacteria remaining the dominant Phylum. Moreover, we report a dominance of Chlorobium genus in the healthy coral tissue sample collected from the severely damaged Site B, suggesting a contribution to tolerance and adaptation to the disturbing environment. Thus, revealing the complex functionally diverse microbial patterns associated with biotic and abiotic disturbed coral reefs will deliver understanding of the symbiotic connections and competitive benefit inside the hosts niche and can reveal a measurable footprint of the environmental impacts on coral ecosystems. We hence, urge scientists to draw more attention towards using coral microbiome as a self-sustaining tool in coral restoration.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Antozoários/microbiologia , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Proteobactérias/genética , China , Água
8.
Sci Rep ; 12(1): 11495, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798782

RESUMO

Mangrove forests are valuable intertidal ecosystems that provide coastline protection, biodiversity maintenance, and carbon sequestration. However, their survival is under severe threat from rapidly rising sea levels. In this study, we aimed to investigate the changes in the area of the Dongzhaigang mangrove in China since the 1950s and causes of these changes using literature and remote sensing data. The impact of historical and future sea level rise (SLR) on the mangroves was analyzed using remote sensing data and climate model data under the low, intermediate, and very high greenhouse gas emission scenarios (Representative Concentration Pathways (RCPs) 2.6, 4.5, and 8.5). The area of the mangrove forests decreased from 3416 to 1711 hm2 during 1956-1988 and remained constant at 1711 hm2 after the 1990s, owing to anthropogenic disturbances such as reclamation and aquaculture before the 1980s and the protection of nature reserve establishment after the 1990s, respectively. Under RCPs 4.5 and 8.5, SLR is expected to cause > 26% of the mangroves to disappear by 2100, whereas under RCP 2.6, only 17% of the mangroves will likely be lost. Biological measures such as reestablishment of ponds as mangrove forests, afforestation, and biological embankment for sediment trapping in coastal wetlands are recommended to enhance the resilience of mangroves to SLR.


Assuntos
Ecossistema , Elevação do Nível do Mar , Sequestro de Carbono , China , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...